Pancreatic cancer cells show lower oleic acid oxidation and their conditioned medium inhibits oleic acid oxidation in human myotubes

2020 
Abstract Background /Objectives: We aimed to metabolically compare healthy primary human pancreatic epithelial cells (hPEC) to a pancreatic cancer cell line (PANC-1) and explore the effect on energy metabolism of exposing primary human myotubes to conditioned medium from hPEC and PANC-1 cells. Methods Differences in metabolism were examined with radiolabeled glucose, oleic acid and lactic acid, and by qPCR. Mass spectrometry-based proteomics was used to study global protein secretion from the two cell types. Pathway analyses were performed. Results PANC-1 cells tended to have higher glucose uptake, production of lactic acid, and glucose oxidation compared to hPEC cells. PANC-1 cells had higher uptake but lower oxidation of oleic acid, and mitochondrial reserve capacity from oleic acid was lower in PANC-1 cells. These differences in energy metabolism were reflected by differences in gene expressions and pathway analyses of the secretome. Conditioned medium from PANC-1 cells attenuated oleic acid oxidation in primary human myotubes. Conclusions Metabolic characterization of the PANC-1 cells revealed a glycolytic phenotype since they had an active glucose oxidation. Furthermore, PANC-1 cells showed a lower oleic acid oxidation and secreted a high amount of proteins into conditioned medium that also induced a reduced oleic acid oxidation in myotubes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []