Porous carbon nitrification process optimization for enhanced benzene adsorption

2018 
ABSTRACTBenzene is one of the aromatic hydrocarbons co-absorbed with acid gases during amine scrubbing that contribute to deactivation of catalyst in the Claus process. The present work attempts to modify the porous carbon surface through nitrogen group functionalization utilizing melamine as the nitrogen source, adopting Design of Experiments (DOE) with concentration of melamine, duration of impregnation and temperature of impregnation being the process variables, while BET surface area was the response variable. The surface modified samples were subjected to benzene adsorption. The optimal nitrogen content that had minimal pore damage was found to be less than 4.3%, with concentration of melamine being the most significant variable. Surface nitrogen functionalization reduced the surface area whereas the benzene adsorption capacity increased. Benzene adsorption capacity as high as 14.72 mmol/g was recorded at 45°C at a pressure of 235 mbar. Such high adsorption capacities have not been reported in open l...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    9
    Citations
    NaN
    KQI
    []