New models for X-ray synchrotron radiation from the remnant of supernova 1006 AD

2001 
Galactic cosmic rays up to energies of around 1015 eV are assumed to originate in supernova remnants (SNRs). The shock wave of a young SNR like SN 1006 AD can accelerate electrons to energies greater than 1 TeV, where they can produce synchrotron radiation in the X-ray band. A new model (SRESC) designed to model synchrotron X-rays from Type Ia supernovae can constrain values for the magnetic-field strength and electron scattering properties, with implications for the acceleration of the unseen ions which dominate the cosmic-ray energetics. New observations by ASCA, ROSAT, and RXTE have provided enormously improved data, which now extend to higher X-ray energies. These data allow much firmer constraints. We will describe model fits to these new data on SN 1006 AD, emphasizing the physical constraints that can be placed on SNRs and on the cosmic-ray acceleration process.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []