Double-crosslinked cellulose nanofiber based bioplastic films for practical applications.

2021 
Abstract While green bioplastic based on carbohydrate polymers have showed considerable promise, the methods typically used to prepare them in a single material have remained a significant challenge. In this study, a simple approach is proposed to fabricate high performance cellulose films composed of chemically and physically dual-crosslinked 2,2,6,6-tetramethylpiperidine-1-oxy-oxidized cellulose nanofibers (DC TEMPO-CNFs). The hydroxyl groups of TEMPO-CNF suspensions were firstly crosslinked chemically with epichlorohydrin (ECH), and subsequently TEMPO-CNF matrices were crosslinked physically via the strong electrostatic interaction between carboxylate and Ca2+ ions. It was found that the optimized DC TEMPO-CNF films exhibit a good transmittance (90%) and a high tensile strength (303 MPa). Furthermore, these DC TEMPO-CNF films revealed superior thermal stability and excellent water resistance compared to neat TEMPO-CNF films without crosslinked domains. We believe that these results will pave the way to preparing practical polysaccharide bioplastics with simple, environmentally-friendly manufacturing processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    3
    Citations
    NaN
    KQI
    []