A method for predicting non-equilibrium thermal expansion using steepest-entropy-ascent quantum thermodynamics

2018 
Steepest-entropy-ascent quantum thermodynamics (SEAQT) is an intriguing approach that describes equilibrium and dynamic processes in a self-consistent way. The applicability is limited to mainly gas phases because of a complex eigenstructure (eigenvalues and eigenfunctions) of solid or liquid phases. In this contribution, the SEAQT modeling is extended to a condensed phase by constructing a simplified eigenstructure (so-called pseudo-eigenstructure), and the applicability is demonstrated by calculating the thermal expansion of metallic silver in three cases: (a) at stable equilibrium, (b) along three irreversible paths from an initial nonequilibrium state to stable equilibrium, and (c) along an irreversible path between two stable equilibrium states. The SEAQT framework with an anharmonic pseudo-eigenstructure predicts reasonable values for equilibrium thermal expansion. For the irreversible cases considered, the SEAQT approach makes it possible to predict the time-dependence of lattice relaxations from the initial state to the final state.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    10
    Citations
    NaN
    KQI
    []