Conversion of laser energy to nuclear energy driven by Coulomb explosion of nanostructures

2013 
Tabletop nuclear fusion reactions in the chemical physics laboratory can be induced by ultrafast, high-energy dynamics of multicharged nanostructures. Compelling experimental and theoretical evidence emerged for nuclear fusion driven by Coulomb explosion (NFDCE) of multicharged deuterium, containing nanostructures generated by ultraintense, femtosecond, near-infrared laser pulses. NFDCE constitutes the conversion of laser energy to nuclear energy mediated by the dynamics of molecular nanostructures. Theoretical-computational studies of tabletop laser-driven nuclear fusion of high-energy (upto 15 MeV) deuterons with 7Li, 6Li and D nuclei demonstrate the attainment of high fusion yields within a source–target reaction design. This constitutes a source of Coulomb exploding deuterium nanodroplets and a solid, hollow cylindrical target containing the second element. The fusion yields and efficiencies were maximised for the nanodroplet size and the laser parameters which accomplish optimal laser energy depositi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    1
    Citations
    NaN
    KQI
    []