Microstructural Unit Controlling Cleavage Crack Propagation in High Strength Bainitic Steels

2014 
The strengthening mechanisms which are operative in bainite are very well known: small bainite packet, small width of the laths, dislocation density and size and number of carbide particles (Fe3C), among others. Bainite packet size has been traditionally considered as the value measured by optical microscopy (OM), as electron back scattered diffraction (EBSD) technique is relatively recent. In a V-microalloyed steel with bainitic microstructure of C=0.38%, V=0.12% and N= 0.0214% the average length and width of ferrite laths and of cementite carbides were measured. On the other hand, the bainite packet size was measured by OM and EBSD with a misorientation of 15o. These values of the microstructural units have been taken in account to calculate the effective surface energy γp given by Griffith’s model for cleavage fracture. It was concluded that bainite packet size determined by EBSD with a misorientation angle criterion of 15o was the microstructural parameter that controls cleavage crack propagation. Given the relationship between the average unit crack path (UCP) and the bainite packet size, it was concluded that the effective surface energy of cleavage fracture (γp) would be between 71.6 and 82.6 J m-2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []