Novel application of behavioral assays allows dissociation of joint pathology from systemic extra-articular alterations induced by inflammatory arthritis

2016 
Introduction: Although rheumatoid arthritis (RA) is a disease of articular joints, patients often suffer from co-morbid neuropsychiatric changes, such as anxiety, that may reflect links between heightened systemic inflammation and abnormal regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Here, we apply behavioral neuroscience methods to assess the impact of antigeninduced arthritis (AIA) on behavioral performance in wild type (WT) and interleukin-10 deficient (Il10-/-) mice. Our aim was to identify limb-specific motor impairments, as well as neuropsychological responses to inflammatory arthritis. Methods: Behavioral testing was performed longitudinally in WT and Il10-/- mice before and after the induction of arthritic joint pathology. Footprint analysis, beam walking and open field assessment determined a range of motor, exploratory and anxietyrelated parameters. Specific gene changes in HPA axis tissues were analyzed using qPCR. Results: Behavioral assessment revealed transient motor and exploratory impairments in mice receiving AIA, coinciding with joint swelling. Hind limb coordination deficits were independent of joint pathology. Behavioral impairments returned to baseline by 10 days post-AIA in WT mice. Il10-/- mice demonstrated comparable levels of swelling and joint pathology as WT mice up to 15 days post-AIA, but systemic differences were evident in mRNA expression in HPA axis tissues from Il10-/- mice post-AIA. Interestingly, the behavioral profile of Il10-/- mice revealed a significantly longer time post-AIA for activity and anxiety-related behaviors to recover. Conclusions: The novel application of sensitive behavioral tasks has enabled dissociation between behaviors that occur due to transient joint-specific pathology and those generated by more subtle systemic alterations that manifest post-AIA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []