Low-Frequency (20 kHz) Ultrasonic Modulation of Drug Action.

2020 
Abstract We tested the effect of low-frequency ultrasound (LUS, 20 kHz, 4 W/cm2) on the function of rat mesentery and human pulmonary arteries with wire myography. The vessels were induced to contract with either noradrenaline or physiologic saline solution (PSS) with a high potassium concentration (KPSS) and then incubated with capsaicin (2.1 × 10–7 M, TRPV1 [transient receptor potential vanilloid 1] activator), dopamine (1 × 10–4 M, dopamine and α2-receptor activator), or fenoldopam (dopamineA1 receptor agonist, 1 × 10–4 M) with and without glibenclamide (1 μM, KATP [adenosine triphosphate {sensitive potassium channel (ATP)}-sensitive potassium channel] inhibitor and α2-receptor modulator), and insonated. Vessels were incubated in Ca2+-free PSS and induced to contract with added extracellular Ca2+ and noradrenaline. Pulmonary arteries were induced to contract with KPSS and dopamine. Then the vessels were insonated. LUS inhibited the influx of external Ca2+, inhibited the dopamine-induced vasoconstriction in the KPSS (glibenclamide reversible), reduced the capsaicin-induced vasorelaxation, increased the gentamicin-induced vasorelaxation and increased the dopamine-induced contraction in the KPSS in human pulmonary arteries.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    2
    Citations
    NaN
    KQI
    []