Coordination and organometallic chemistry of relevance to the rhodium-based catalyst for ethylene hydroamination.
2011
The RhCl(3)·3H(2)O/PPh(3)/nBu(4)PI catalytic system for the hydroamination of ethylene by aniline is shown to be thermally stable by a recycle experiment and by a kinetic profile study. The hypothesis of the reduction under catalytic conditions to a Rh(I) species is supported by the observation of a high catalytic activity for complex [RhI(PPh(3))(2)](2). New solution equilibrium studies on [RhX(PPh(3))(2)](2) (X = Cl, I) in the presence of ligands of relevance to the catalytic reaction (PPh(3), C(2)H(4), PhNH(2), X(-), and the model Et(2)NH amine) are reported. Complex [RhCl(PPh(3))(2)](2) shows broadening of the (31)P NMR signal upon addition of PhNH(2), indicating rapid equilibrium with a less thermodynamically stable adduct. The reaction with Et(2)NH gives extensive conversion into cis-RhCl(PPh(3))(2)(NHEt(2)), which is however in equilibrium with the starting material and free Et(2)NH. Excess NHEt(2) yields a H-bonded adduct cis-RhCl(PPh(3))(2)(Et(2)NH)···NHEt(2), in equilibrium with the precursors, as shown by IR spectroscopy. The iodide analogue [RhI(PPh(3))(2)](2) shows less pronounced reactions (no change with PhNH(2), less extensive addition of Et(2)NH with formation of cis-RhI(PPh(3))(2)(NHEt(2)), less extensive reaction of the latter with additional Et(2)NH to yield cis-RhI(PPh(3))(2)(Et(2)NH)···NHEt(2). The two [RhX(PPh(3))(2)](2) compounds do not show any evidence for addition of the corresponding X(-) to yield a putative [RhX(2)(PPh(3))(2)](-) adduct. The product of C(2)H(4) addition to [RhI(PPh(3))(2)](2), trans-RhI(PPh(3))(2)(C(2)H(4)), has been characterized in solution. Treatment of the RhCl(3)·3H(2)O/PPh(3)/nBu(4)PI/PhNH(2) mixture under catalytic conditions yields mostly [RhCl(PPh(3))(2)](2), and no significant halide exchange, demonstrating that the promoting effect of iodide must take place at the level of high energy catalytic intermediates. The equilibria have also been investigated at the computational level by DFT with treatment at the full QM level including solvation effects. The calculations confirm that the bridge splitting reaction is slightly less favorable for the iodido derivative. Overall, the study confirms the active role of rhodium(I) species in ethylene hydroamination catalyzed by RhCl(3)·3H(2)O/PPh(3)/nBu(4)PI and suggest that the catalyst resting state is [RhCl(PPh(3))(2)](2) or its C(2)H(4) adduct, RhCl(PPh(3))(2)(C(2)H(4)), under high ethylene pressure.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
57
References
6
Citations
NaN
KQI