Characterization of canine dental pulp cells and their neuroregenerative potential Animal

2015 
Dental pulp cells (DPCs) of various species have been studied for their potentials of differentiation into functional neurons and secretion of neurotrophic factors. In canine, DPCs have only been studied for cell surface markers and differentiation, but there is little direct evidence for therapeutic potentials for neurological disorders. The present study aimed to further characterize canine DPCs (cDPCs), particularly focusing on their neuroregenerative potentials. It was also reported that superparamagnetic iron oxide (SPIO) particles were useful for labeling of MSCs and tracking with magnetic resonance imaging (MRI). Our data suggested that cDPCs hold higher proliferation capacity than bone marrow stromal cells, the other type of mesenchymal stem cells which have been the target of intensive research. Canine DPCs constitutively expressed neural markers, suggesting a close relationship to the nervous system in their developmental origin. Canine DPCs promoted neuritogenesis of PC12 cells, most likely through secretion of neurotrophic factors. Furthermore, SPIO nanoparticles could be effectively transported to cDPCs without significant cytotoxicity and unfavorable effects on neuritogenesis. SPIO-labeled cDPCs embedded in agarose spinal cord phantoms were successfully visualized with a magnetic resonance imaging arousing a hope for noninvasive cell tracking in transplantation studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []