Electrocatalytic Carbon Dioxide Reduction by Using Cationic Pentamethylcyclopentadienyl–Iridium Complexes with Unsymmetrically Substituted Bipyridine Ligands

2015 
Eight [Ir(bpy)Cp*Cl]+-type complexes (bpy= bipyridine, Cp*=1,2,3,4,5-pentamethylcyclopentadienyl) containing differently substituted bipyridine ligands were synthesized and characterized. Cyclic voltammetry (CV) of the complexes in Ar-saturated acetonitrile solutions showed that the redox behavior of the complexes could be fine tuned by the electronic properties of the substituted bipyridine ligands. Further CV in CO2-saturated MeCN/H2O (9:1, v/v) solutions showed catalytic currents for CO2 reduction. In controlled potential electrolysis experiments (MeCN/MeOH (1:1, v/v), Eapp=−1.80 V vs Ag/AgCl), all of the complexes showed moderate activity in the electrocatalytic reduction of CO2 with good stability over at least 15 hours. This electrocatalytic process was selective toward formic acid, with only traces of dihydrogen or carbon monoxide and occasionally formaldehyde as byproducts. However, the turnover frequencies and current efficiencies were quite low. No direct correlation between the redox potentials of the complexes and their catalytic activity was observed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    24
    Citations
    NaN
    KQI
    []