Design and simulation of fourth order low-pass Gm-C filter with novel auto-tuning circuit in 90 nm CMOS

2021 
A tunable high-frequency operational transconductance amplifier (OTA) is presented along with its application in the implementation of a Gm-C filter. The OTA is tuned by varying the negative resistance produced by a positive feedback at the output. Post-layout simulation results (using TSMC 90 nm CMOS technology and a 1-V supply voltage) show that the differential DC gain, common-mode gain and OTA unity gain frequency are 34 dB, −26 dB and 10 GHz, respectively. Moreover, for precise control of filter performance, an auto-tuning circuit is presented to adjust the filter cutoff frequency at low power consumption (i.e., 0.6 mW, about 16.3% of the total circuit power consumption). The filter has a cutoff frequency of 1 GHz with a group delay variation less than 6% up to 1.3 fc. The size of filter is 0.040 × 0.023mm2 and the third order intermodulation (IM3) value at cutoff frequency is −37 dB. The Monte Carlo simulation results are presented for predicting the manufacturing process errors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []