Sol-gel electrospinning of diverse ceramic nanofibers and their potential applications

2021 
Abstract Ceramics are composed of both metallic and nonmetallic elements and commonly exist as compounds of oxides, nitrides, and carbides. Two decades back, the use of ceramics was limited to a handful of applications, as in household utilities and some industrial uses. In the era of nanotechnology, the definition and application of materials are altered, especially in the case of ceramics. By the development of various fabrication techniques of nanostructured ceramics, the scope of ceramic materials is radically transformed, making them the most beneficial among the materials ever designed for several critical applications. The fabrication of ceramic nanostructures is challenging from an industrial point of view since many fabrication techniques need sophisticated instrumentation, skilled personnel, purity of chemicals, specificity of the medium, controlled atmosphere, etc. and are anticipated for lab-scale production. The electrospinning process is an exception, which can address all the former problems associated with other fabrication techniques. This chapter covers the electrospun ceramic nanofibers such as oxides, carbides, nitrides, sulfides, etc. from various precursors and their application in the field of biomedical engineering, filtration, energy, electronics, sensor, catalysis, etc. and their peculiar properties, such as photoluminescence, thermoelectric, piezoelectric, and magnetic. Nevertheless, the application of ceramic nanofibers, far more than what is discussed here, and advanced studies are essential to explore the applications of ceramic nanofibers in numerous untouched areas where conventional materials can be replaced.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []