Measuring transcription at a single gene copy reveals hidden drivers of bacterial individuality

2019 
Single-cell measurements of mRNA copy numbers inform our understanding of stochastic gene expression1–3, but these measurements coarse-grain over the individual copies of the gene, where transcription and its regulation take place stochastically4,5. Here, we combine single-molecule quantification of mRNA and gene loci to measure the transcriptional activity of an endogenous gene in individual Escherichia coli bacteria. When interpreted using a theoretical model for mRNA dynamics, the single-cell data allow us to obtain the probabilistic rates of promoter switching, transcription initiation and elongation, mRNA release and degradation. Unexpectedly, we find that gene activity can be strongly coupled to the transcriptional state of another copy of the same gene present in the cell, and to the event of gene replication during the bacterial cell cycle. These gene-copy and cell-cycle correlations demonstrate the limits of mapping whole-cell mRNA numbers to the underlying stochastic gene activity and highlight the contribution of previously hidden variables to the observed population heterogeneity. The combination of single-molecule quantification of mRNA and gene loci in single Escherichia coli cells with mathematical models of mRNA dynamics reveals additional factors governing transcription, including contributions from the transcriptional state of another copy of the same gene present in the cell and from gene-replication events.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    23
    Citations
    NaN
    KQI
    []