DNA supercoiling changes the spacing requirement of two lac operators for DNA loop formation with lac repressor.
1988
Abstract
We have used a gel retardation assay to investigate the influence of DNA supercoiling on loop formation between lac repressor and two lac operators. A series of 15 DNA minicircles of identical size (452 bp) was constructed carrying two lac operators at distances ranging from 153 to 168 bp. Low positive or negative supercoiling (sigma = +/- 0.023) changed the spacing between the two lac operators required for the formation of the most stable loops. This reveals the presence of altered double helical repeats (ranging from 10.3 to 10.7 bp) in supercoiled DNA minicircles. At elevated negative supercoiling (sigma = -0.046) extremely stable loops were formed at all operator distances tested, with a slight spacing periodicity remaining. After relaxation of minicircle-repressor complexes with topoisomerase I one superhelical turn was found to be constrained in those minicircles which carry operators at distances corresponding to a non-integral number of helical turns. This indicates that DNA loop formation can define local DNA domains with altered topological properties of the DNA helix.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
120
Citations
NaN
KQI