Estradiol stimulates mitochondrial biogenesis and adiponectin expression in skeletal muscle.

2014 
Sexual dimorphism has been found in mitochondrial features of skeletal muscle, with female rats showing greater mitochondrial mass and function compared with males. Adiponectin is an insulin-sensitizing adipokine whose expression has been related to mitochondrial function and that is also expressed in skeletal muscle, where it exerts local metabolic effects. The aim of this research was to elucidate the role of sex hormones in modulation of mitochondrial function, as well as its relationship with adiponectin production in rat skeletal muscle. An in vivo study with ovariectomized Wistar rats receiving or not receiving 17b-estradiol (E2) (10 mg/kg per 48 h for 4 weeks) was carried out, in parallel with an assay of cultured myotubes (L6E9) treated with E2 (10 nM), progesterone (Pg; 1 mM), or testosterone (1 mM). E2 upregulated the markers of mitochondrial biogenesis and dynamics, and also of mitochondrial function in skeletal muscle and L6E9. Although in vivo E2 supplementation only partially restored the decreased adiponectin expression levels induced by ovariectomy, these were enhanced by E2 and Pg treatment in cultured myotubes, whereas testosterone showed no effects. Adiponectin receptor 1 expression was increased by E2 treatment, both in vivo and in vitro, but testosterone decreased it. In conclusion, our results are in agreement with the sexual dimorphism previously reported in skeletal muscle mitochondrial function and indicate E2 to be its main effector, as it enhances mitochondrial function and diminishes oxidative stress. Moreover, our data support the idea of the existence of a link between mitochondrial function and adiponectin expression in skeletal muscle, which could be modulated by sex hormones. Key Words
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    47
    Citations
    NaN
    KQI
    []