Detection and characterization of birch pollen in the atmosphere using multi-wavelength Raman lidar in Finland

2019 
Abstract. We present the results of birch pollen characterization using lidar measurements based on a 11-day period of birch pollination from 5 to 15 May 2016 at the European Aerosol Research Lidar Network (EARLINET) station in Vehmasmaki (Kuopio, 62°44′ N, 27°33′ E), Finland. The ground-based multi-wavelength Raman lidar Polly XT performed continuous measurements at this rural forest site and has been combined with a Hirst-type volumetric air sampler which measured the pollen type and concentration on roof level (4 m). The period was separated into two parts due to different atmospheric conditions and detected pollen types. During the first period, high concentrations of birch pollen were measured with a maximum two-hour average pollen concentration of 3700 grains/m³. Other pollen types represented less than 3 % of the total pollen count. In observed pollen layers, the mean particle depolarization ratio at 532 nm was 10 ± 6 % during the intense birch pollination period. Mean lidar ratios were found to be 45 ± 7 and 55 ± 16 sr at 355 and 532 nm, respectively. During the second period, birch pollen was still dominant but a significant contribution of spruce pollen was observed. Spruce pollen grains are highly non-spherical, leading to a larger mean depolarization ratio of 26 ± 7 % of the birch-spruce pollen mixture. Furthermore, higher lidar ratios were observed during this period with a mean value of 60 ± 3 and 62 ± 10 sr at 355 and 532 nm, respectively. The presented study shows the potential of the particle depolarization ratio to track pollen grains in the atmosphere.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    1
    Citations
    NaN
    KQI
    []