Design considerations for primary control in multi-terminal VSC-HVDC grids

2015 
Multi-terminal dc networks based on voltage source converters (VSC) are the latest trend in dc-systems; the interest in the area is being fueled by the increased feasibility of these systems for the large scale integration of remote offshore wind resources. Despite the active research effort in the field, at the moment, issues related to the operation and control of these networks, as well as sizing, are still uncertain. This paper intends to make a contribution in this field by analyzing the sizing of droop control for VSC together with the output capacitors. Analytical formulas are developed for estimating the voltage peaks during transients, and then it is shown how these values can be used to dimension the dc-bus capacitor of each VSC. Further on, an improved droop control strategy that attenuates the voltage oscillations during transients is proposed. The proposed methods are validated on the dc-grid benchmark proposed by the CIGRE B4 working group. Starting from the structure of the network and the power rating of the converters at each terminal, the output capacitors and the primary control layer are designed together in order to ensure acceptable voltage transients.(C) 2014 Elsevier B.V. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    37
    Citations
    NaN
    KQI
    []