Fe–B–C composites produced using spark plasma sintering

2015 
Abstract Fe–B–C composites were produced using iron and boron carbide powders. The powders were mixed to produce various compositions, ranging from 1 vol.% Fe to 80.1 vol.% Fe. Spark plasma sintering (SPS) was used to densify the composite powder green compacts. The sintering temperatures used ranged from 900 °C for the composites with a high iron content to 2000 °C for those with a high boron carbide content. It was evident that during the sintering process the iron reacted with the boron carbide. XRD analysis showed the presence of FeB, Fe 2 B, Fe 3 C, Fe 3 (B 0.6 C 0.4 ), Fe 23 (B,C) 6 and residual carbon as reaction products. The composites were found to have hardness values between 9.8 and 33.1 GPa with the higher hardness being associated with the higher boron carbide contents. The fracture toughness values determined were in the range of 2.8–5.3 MPa m 0.5 . With increasing iron content from 1 to 5 vol.%, it is evident that the FeB formed begins to embrittle the material rather than increase the fracture toughness as a result of the high residual stresses between the B 4 C and FeB phases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    1
    Citations
    NaN
    KQI
    []