Adipogenic transcriptional regulation of hepatic stellate cells

2005 
Abstract Hepatic stellate cells (HSC) undergo transdifferentiation (activation) from lipid-storing pericytes to myofibroblastic cells to participate in liver fibrogenesis. Our recent work demonstrates that depletion of peroxisome proliferator-activated receptor γ (PPARγ) constitutes one of the key molecular events for HSC activation and that ectopic expression of this nuclear receptor achieves the phenotypic reversal of activated HSC to the quiescent cells. The present study extends these findings to test a novel hypothesis that adipogenic transcriptional regulation is required for the maintenance of HSC quiescence. Comparative analysis of quiescent and activated HSC in culture reveals higher expression of putative adipogenic transcription factors such as CCAAT/enhancer-binding protein (C/EBP) α, C/EBPβ, C/EBPδ, PPARγ, liver X receptor α, sterol regulatory element-binding protein 1c and of adipocyte-specific genes in the quiescent cells. Conversely, activated HSC have increased expression of PPARβ, a transcription factor known to promote fatty acid oxidation. A treatment of activated HSC with the adipocyte differentiation mixture (isobutylmethylxanthine, dexamethasone, and insulin) or ectopic expression of PPARγ or SREBP-1c in these cells, induces a panel of adipogenic transcription factors, reduces PPARβ, and causes the phenotypic reversal to quiescent HSC. These results support the importance of adipogenic transcriptional regulation in HSC quiescence and provide a new framework for identifying novel molecular targets for the treatment of liver cirrhosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    233
    Citations
    NaN
    KQI
    []