Direct extraction of the electron tunneling effective mass in ultrathin SiO2

1996 
Electron transport in ultrathin (tox<40 A) Al/SiO2/n−Si structures is dominated by direct tunneling of electrons across the SiO2 barrier. By analyzing the tunneling currents as a function of the SiO2 layer thickness for a comprehensive set of otherwise identical samples, we are able to extract an effective mass for the tunneling electron in the SiO2 layer. Oxide films 16–35 A thick were thermally grown in situ in a dry oxygen ambient. The oxide thicknesses were determined by capacitance–voltage measurements and by spectroscopic ellipsometry. The tunneling effective mass was extracted from the thickness dependence of the direct tunneling current between an applied voltage of 0 and 2 V, a bias range that has not been previously explored. Employing both a parabolic and a nonparabolic assumption of the E−κ relationship in the oxide forbidden gap, we found the SiO2 electron mass to be mP*=0.30±0.02me, and mNP*=0.41±0.01me, respectively, independent of bias. Because this method is based on a large sample set, t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    243
    Citations
    NaN
    KQI
    []