Rotational Molding of Polyamide-6 Nanocomposites with Improved Flame Retardancy

2012 
The aim of this work was to develop polyamide-6/ organicmodified montmorillonite (omMMT) nanocomposites for the production of hollow parts by rotational molding. Particular emphasis was placed on the mechanical and flame retardancy properties needed for the fabrication of vessels for flammable liquids. The morphology of the melt compounded nanocomposites, produced by melt compounding, was investigated by Xray diffraction measurements (WAXD), and Transmission Electron Microscopy (TEM) showed an exfoliated structure. Rheological measurements were used in order to verify whether the viscosity of materials was adequate for rotational molding. While thermomechanical analysis has revealed that neat PA6 and its nanocomposites were not suitable for rotational molding, due to the very low thermal stability of the polymer, the addition of a thermal stabilizer, shifted the onset of degradation to higher temperatures, thus widening the processing window of both PA6 and PA6 nanocomposites. Largescale vessel prototypes were obtained by rotational molding of thermo-stabilized PA6 and its nanocomposites, and samples extracted from the rotomolded parts were characterized with respect to physical and mechanical properties. It was found that the PA6 nanocomposites exhibited significant improvements at cone calorimeter tests in comparison with neat PA6.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    17
    Citations
    NaN
    KQI
    []