Controlling surface-induced nanocomposites by lipoplexes for enhanced gene transfer

2015 
Surface-induced biomineralization represents a flexible approach to immobilizing DNA onto biomaterial surfaces for surface-mediated DNA delivery. Immobilized naked DNA is uniformly embedded in thin films of nanocomposites, which limits the internalization of DNA to some cell types, such as neuronal cells. In this study, DNA molecules were initially complexed with liposomes to form lipoplexes. Subsequently, these lipoplexes were immobilized onto a cell culture compatible surface through surface-induced biomineralization. Under all the conditions we examined, lipoplexes were efficiently immobilized onto the surface and formed lipoplex-nanocomposites. We have shown that the size of liposomes and the composition of mineralizing solutions have significant effects on the morphology and topology of nanocomposites and thus the organization and the intracellular levels of DNA. The transgene expression mediated by lipoplex-nanocomposites was greatly enhanced in neuronal cells compared to the immobilized naked DNA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []