Performance improvement of InGaN/GaN multiple quantum well visible-light photodiodes by optimizing TEGa flow*

2017 
The performance of an InGaN/GaN multiple quantum well (MQW) based visible-light Schottky photodiode (PD) is improved by optimizing the source flow of TEGa during InGaN QW growth. The samples with five-pair InGaN/GaN MQWs are grown on sapphire substrates by metal organic chemical vapor deposition. From the fabricated Schottky-barrier PDs, it is found that the smaller the TEGa flow, the lower the reverse-bias leakage is. The photocurrent can also be enhanced by depositing the InGaN QWs with using lower TEGa flow. A high responsivity of 1.94 A/W is obtained at 470 nm and −3-V bias in the PD grown with optimized TEGa flow. Analysis results show that the lower TEGa flow used for depositing InGaN may lead to superior crystalline quality with improved InGaN/GaN interface, and less structural defects related non-radiative recombination centers formed in the MQWs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []