Inhibition of ABCC1 Decreases cAMP Egress and Promotes Human Airway Smooth Muscle Cell Relaxation.

2021 
In most living cells, the second messenger roles for 3',5'-cyclic adenosine monophosphate (cAMP) are short-lived, confined to the intracellular space, and tightly controlled by the binary switch-like actions of the stimulatory G protein (Gαs)-activated adenylyl cyclase (cAMP production) and cAMP-specific phosphodiesterase (cAMP breakdown). Using human airway smooth muscle (HASM) cells in culture as a model, here we report that activation of the cell surface β2-adrenoceptor (β2AR), a Gs-coupled G protein-coupled receptor (GPCR), evokes cAMP egress to the extracellular space. Increased extracellular cAMP levels ([cAMP]e) are long-lived in culture and induced by receptor-dependent and receptor-independent mechanisms in such a way as to define a universal response class of increased intracellular cAMP levels ([cAMP]i). We find that HASM cells express multiple ATP-binding cassette (ABC) membrane transporters, with ABCC1 being the most highly enriched transcript mapped to multidrug resistance associated proteins (MRPs). We show that pharmacological inhibition or downregulation of ABCC1 with small interfering RNA markedly reduces β2AR-evoked cAMP release from HASM cells. Further, inhibition of ABCC1 activity or expression decreases basal tone and increases β-agonist-induced HASM cellular relaxation. These findings identify a previously unrecognized role for ABCC1 in the homeostatic regulation of [cAMP]i in HASM that may be conserved traits of the Gs-coupled family of GPCRs. Hence, the general features of this activation mechanism may uncover new disease-modifying targets in the treatment of airflow obstruction in asthma. Surprisingly, we find that serum cAMP levels are elevated in a small cohort of patients with asthma as compared with controls that warrants further investigation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []