AN ENGINEERED CYSTEINE IN THE EXTERNAL MOUTH OF A K+ CHANNEL ALLOWS INACTIVATION TO BE MODULATED BY METAL BINDING

1994 
Substitution of a cysteine in the extracellular mouth of the pore of the Shaker-delta K+ channel permits allosteric inhibition of the channel by Zn2+ or Cd2+ ions at micromolar concentrations. Cd2+ binds weakly to the open state but drives the channel into the slow (C-type) inactivated state, which has a Kd for Cd2+ of approximately 0.2 microM. There is a 45,000-fold increase in affinity when the channel changes from open to inactivated. These results indicate that C-type inactivation involves a structural change in the external mouth of the pore. This structural change is reflected in the T449C mutant as state-dependent metal affinity, which may result either from a change in proximity of the introduced cysteine residues of the four subunits or from a change of the exposure of this residue on the surface of the protein.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    267
    Citations
    NaN
    KQI
    []