Aldolases Utilize Different Oligomeric States To Preserve Their Functional Dynamics.

2015 
Aldolases are essential enzymes in the glycolysis pathway and catalyze the reaction cleaving fructose/tagatose 1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. To determine how the aldolase motions relate to its catalytic process, we studied the dynamics of three different class II aldolase structures through simulations. We employed coarse-grained elastic network normal-mode analyses to investigate the dynamics of Escherichia coli fructose 1,6-bisphosphate aldolase, E. coli tagatose 1,6-bisphosphate aldolase, and Thermus aquaticus fructose 1,6-bisphosphate aldolase and compared their motions in different oligomeric states. The first one is a dimer, and the second and third are tetramers. Our analyses suggest that oligomerization not only stabilizes the aldolase structures, showing fewer fluctuations at the subunit interfaces, but also allows the enzyme to achieve the required dynamics for its functional loops. The essential mobility of these loops in the functional oligome...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    10
    Citations
    NaN
    KQI
    []