Spin-Polarized Transport and Spin Seebeck Effect in Triple Quantum Dots with Spin-Dependent Interdot Couplings

2018 
We study the spin-dependent electronic and thermoelectric transport through a structure composed of triple quantum dots (TQDs) coupled to two metallic leads in the presence of spin-dependent interdot couplings, which is reliable by applying a static magnetic field on the tunnel junctions between different dots. When the TQDs are serially connected, a 100 % spin-polarized conductance and thermopower emerge even for very small spin-polarization of the interdot coupling as the dots are weakly coupled to each other. Whereas if the TQDs are connected in a ring shape, the Fano antiresonance will result in sharp peaks in the conductance and thermopower. In the presence of spin-dependent interdot couplings, the peaks of the spin-up and spin-down thermopowers will shift to opposite directions in the dot level regime, resulting large either 100 % spin-polarized or pure spin thermopowers. The latter generally arises at low temperatures and is robust against the level detuning, the dot-lead coupling, and the system equilibrium temperature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    4
    Citations
    NaN
    KQI
    []