[Development of Tumor-targeting Antitumor Agents Based on Polymer Effect].

2020 
Here the author describes the tumor-selective delivery of a fluorescence photosensitizing agent and an antitumor agent, based on the polymer effect of an N-(2-hydroxypropyl)methacrylamide (HPMA) based copolymer, by utilizing the enhanced permeability and retention (EPR) effect seen in solid tumors. Firstly, the tumor distribution of the photosensitizer, zinc-protoporphyrin IX (ZnPP), was significantly increased by conjugation with the HPMA polymer (P-ZnPP). The P-ZnPP suppressed tumor growth by local generation of cytotoxic singlet oxygen, and the tumor tissue was visualized by fluorescence upon light irradiation. Subsequently, a two-step mechanism for tumor selectivity was observed for the cytotoxic anthracycline, pirarubicin (THP), which conjugated the HPMA-based copolymer via a hydrazone bond (P-THP). The EPR-dependent accumulation of P-THP and the tumor-selective release of THP in the tumor tissues led to highly tumor-selective toxicity. Rapid cell uptake of THP compared to other anthracyclines, and deeper P-THP penetration of the tumor cell spheroid were attributed to the superior antitumor activity of P-THP. The molecular weight of P-THP affected its antitumor activity; oligomeric P-THP derivatives with higher molecular weights, DP-THP and SP-THP, showed even higher antitumor activity. P-THP was effective for both implanted tumor and autochthonous tumor models. These results indicate that nano-sized anticancer drugs based on polymer effect are promising clinical therapeutics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []