Solar Plasma Radio Emission in the Presence of Imbalanced Turbulence of Kinetic-Scale Alfvén Waves

2017 
We study the influence of kinetic-scale Alfvenic turbulence on the generation of plasma radio emission in the solar coronal regions where the ratio \(\upbeta\) of plasma to magnetic pressure is lower than the electron-to-ion mass ratio \(m_{\mathrm{e}}/m_{\mathrm{i}}\). The present study is motivated by the phenomenon of solar type I radio storms that are associated with the strong magnetic field of active regions. The measured brightness temperature of the type I storms can be up to \(10^{10}~\mbox{K}\) for continuum emission, and can exceed \(10^{11}~\mbox{K}\) for type I bursts. At present, there is no generally accepted theory explaining such high brightness temperatures and some other properties of the type I storms. We propose a model with an imbalanced turbulence of kinetic-scale Alfven waves that produce an asymmetric quasi-linear plateau on the upper half of the electron velocity distribution. The Landau damping of resonant Langmuir waves is suppressed and their amplitudes grow spontaneously above the thermal level. The estimated saturation level of Langmuir waves is high enough to generate observed type I radio emission at the fundamental plasma frequency. Harmonic emission does not appear in our model because the backward-propagating Langmuir waves undergo strong Landau damping. Our model predicts \(100\%\) polarization in the sense of the ordinary (o-) mode of type I emission.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    12
    Citations
    NaN
    KQI
    []