Model Predictive Control of a Vehicle using Koopman Operator

2020 
This paper continues in the work from arXiv:1903.06103 [math.OC] where a nonlinear vehicle model was approximated in a purely data-driven manner by a linear predictor of higher order, namely the Koopman operator. The vehicle system typically features a lot of nonlinearities such as rigid-body dynamics, coordinate system transformations and most importantly the tire. These nonlinearities are approximated in a predefined subset of the state-space by the linear Koopman operator and used for a linear Model Predictive Control (MPC) design in the high-dimension state space where the nonlinear system dynamics evolve linearly. The result is a nonlinear MPC designed by linear methodologies. It is demonstrated that the Koopman-based controller is able to recover from a very unusual state of the vehicle where all the aforementioned nonlinearities are dominant. The controller is compared with a controller based on a classic local linearization and shortcomings of this approach are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []