Implementation of a Sample Pooling Strategy for the Direct Detection of SARS-CoV-2 by Real-Time Polymerase Chain Reaction During the COVID-19 Pandemic.

2021 
OBJECTIVES: To report our institutional experience in devising and implementing a pooling protocol and process for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcription polymerase chain reaction (RT-PCR) testing over a 3-month period in the fall of 2020. METHODS: The widespread testing implemented in the United States for detecting SARS-CoV-2 infection in response to the coronavirus disease 2019 pandemic has led to a significant shortage of testing supplies and therefore has become a major impediment to the public health response. To date, several institutions have implemented sample pooling, but publications documenting these experiences are sparse. Nasal and nasopharyngeal samples collected from low-positivity (<5%) areas were tested in pools of five on the Roche cobas 6800 analyzer system. Routine SARS-CoV-2 RT-PCR turnaround times between sample collection to result reporting were monitored and compared before and after sample pooling implementation. RESULTS: A total of 4,131 sample pools were tested over a 3-month period (during which 39,770 RT-PCR results were reported from the Roche system), allowing our laboratory to save 13,824 tests, equivalent to a conservation rate of 35%. A 48-hour or less turnaround time was generally maintained throughout the pooling period. CONCLUSIONS: Sample pooling offers a viable means to mitigate shortfalls of PCR testing supplies in the ongoing pandemic without significantly compromising overall turnaround times.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []