Evaluation of structural, electrical and magnetic properties of nanosized unary, binary and ternary particles of Fe 3 O 4 , SnO 2 and TiO 2

2021 
In the present study, unary, binary and ternary nanoparticles (NPs) of Fe3O4, TiO2 and SnO2 were synthesized using microemulsion assisted precipitation method. For characterization we have used the X-ray diffraction (XRD), Transmittance electron microscopy (TEM), Energy dispersive X-ray (EDX), UV–Visible and Fourier transform infrared (FTIR) spectroscopy. The measured electrical properties were used to determine the resistance and conduction processes. Two-point probe method was applied for measuring the DC electrical resistivity between 303–723 K, while the vibrating sample magnetometer (VSM) was used to measure the magnetic properties. The band gap study reveals that a low band gap of Fe3O4 compared to other nanoparticles suggests that it is more reactive than the TiO2 and SnO2 investigated in this study. It was observed that the electrical resistivity decreased with an increase in the temperature, indicated the increase in drift mobility. The activation energy value of ternary nanocomposites (TNC) was found higher than the corresponding unary NPs and binary nanocomposites. As far as the magnetic properties are concerned, Fe3O4 NPs were ferrimagnetic while the others have shown paramagnetic behavior under the applied magnetic field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    0
    Citations
    NaN
    KQI
    []