4D Thermomechanical metamaterials for soft microrobotics

2021 
Metamaterials have attracted wide scientific interest to break fundamental bounds on materials properties. Recently, the field has been extending to coupled physical phenomena where one physics acts as the driving force for another. Stimuli-responsive or 4D metamaterials have been demonstrated for thermo-elasticity, magneto-optics or piezo-electricity. Herein, a soft, ultra-compact and accurate microrobot is described which can achieve controlled motion under thermal stimuli. The system consists of an organized assembly of two functional structures: a rotational and a translational element. Both elements are designed basing upon the principle of the thermoelastic bilayer plate that bends as temperature changes. Samples are fabricated using gray-tone lithography from a single polymer but with two different laser writing powers, making each part different in its thermal and mechanical behaviors. Excellent motion-controllable, reversible and stable features in a dry environment are verified by simulations and experiments, revealing broad application prospects for the designed soft micro actuators. 4D metamaterials offer the additional functionality of being responsive to external stimuli. Here, a metamaterial-based soft robot is composed of bilayer plates that can rotate and translate in response to thermal stimuli, allowing controlled motion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    1
    Citations
    NaN
    KQI
    []