Densification behavior, microstructure evolution, and tensile properties of selective laser melting additive manufactured TiB2/AlSi10Mg composite

2020 
The fabrication of TiB2/AlSi10Mg composites by selective laser melting (SLM) additive manufacturing has been conducted. The influence of laser processing parameters on the densification behavior, microstructure evolution, and tensile properties of the SLM-processed composites is addressed. With the increase in laser volume energy density, the densification rate increased and reached 99% at a laser speed of 1000 mm/s. Meanwhile, the TiB2 particles underwent a partial melting behavior with the formation of an irregular pattern in the solidified part and complete melting with the smooth surface of the reinforcing particles as the laser volume energy increased. The cellular-dendritic microstructure and the width of the eutectic phase of the as-fabricated composites were significantly refined due to the high cooling rate and complete melting of the reinforcing particles as the nucleation sites using the laser energy density of 117 J/mm3. Therefore, the microhardness, ultimate tensile strength, yielding strength, and elongation of the as-fabricated TiB2/AlSi10Mg composites obtained in this process condition were 131.3 HV0.2, 375 MPa, 260 MPa, and 3.1%, respectively, which were significantly higher than those of the unreinforced AlSi10Mg alloy.The fabrication of TiB2/AlSi10Mg composites by selective laser melting (SLM) additive manufacturing has been conducted. The influence of laser processing parameters on the densification behavior, microstructure evolution, and tensile properties of the SLM-processed composites is addressed. With the increase in laser volume energy density, the densification rate increased and reached 99% at a laser speed of 1000 mm/s. Meanwhile, the TiB2 particles underwent a partial melting behavior with the formation of an irregular pattern in the solidified part and complete melting with the smooth surface of the reinforcing particles as the laser volume energy increased. The cellular-dendritic microstructure and the width of the eutectic phase of the as-fabricated composites were significantly refined due to the high cooling rate and complete melting of the reinforcing particles as the nucleation sites using the laser energy density of 117 J/mm3. Therefore, the microhardness, ultimate tensile strength, yielding strengt...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []