High-Performance Organic Energy-Harvesting Devices and Modules for Self-Sustainable Power Generation under Ambient Indoor Lighting Environments

2019 
Organic photovoltaics (OPVs) that perform more efficiently under artificial indoor lighting conditions than they do under sunlight are attracting growing interest as they can potentially serve as ambient energy harvesters for powering low-power electronics and portable devices for the Internet of Things. Herein, solution-processed small-molecule OPVs are demonstrated to exhibit high power conversion efficiencies exceeding 16% under white LED illumination, delivering high output power densities of up to 12.4 and 65.3 μW cm–2 at 200 and 1000 lx, respectively. Increasing the open-circuit voltage (Voc) of OPVs is a critical factor for achieving higher indoor photovoltaic performance. Toward real applications, this small-molecule OPV system is adopted to fabricate six series-connected modules with an active area of ∼10 cm2 that are capable of generating a high output power surpassing 100 μW and a high Voc of over 4.2 V even under dimly lit indoor conditions of 200 lx. These results indicate that OPVs are promi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    41
    Citations
    NaN
    KQI
    []