Macroscopic Ionic Flow in a Superionic Conductor Na+ β-Alumina Driven by Single-Cycle Terahertz Pulses

2020 
Ionic motion significantly contributes to conductivity in devices such as memory, switches, and rechargeable batteries. In our work, we experimentally demonstrate that intense terahertz electric-field transients can be used to manipulate ions in a superionic conductor, namely Na^{+} beta-alumina. The cations trapped in the local potential minima are accelerated using single-cycle terahertz pulses, thereby inducing a macroscopic current flow on a subpicosecond timescale. Our results clearly show that single-cycle terahertz pulses can be used to significantly modulate the nature of superionic conductors and could possibly serve as a basic tool for application in future electronic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    1
    Citations
    NaN
    KQI
    []