Displacement Analysis of Myocardial Mechanical Deformation (DIAMOND) Reveals Segmental Heterogeneity of Cardiac Function in Embryonic Zebrafish

2020 
Zebrafish are increasingly utilized as a model organism for cardiomyopathies and regeneration. Current methods evaluating cardiac function fail to reliably detect segmental mechanics and are not readily feasible in zebrafish. Here we present a semiautomated, open-source method for the quantitative assessment of four-dimensional (4D) segmental cardiac function: displacement analysis of myocardial mechanical deformation (DIAMOND). Transgenic embryonic zebrafish were imaged in vivo using a light-sheet fluorescence microscopy system with 4D cardiac motion synchronization. Acquired 3D digital hearts were reconstructed at end-systole and end-diastole, and the ventricle was manually segmented into binary datasets. Then, the heart was reoriented and isotropically resampled along the true short axis, and the ventricle was evenly divided into eight portions (I–VIII) along the short axis. Due to the different resampling planes and matrices at end-systole and end-diastole, a transformation matrix was applied for image registration to restore the original spatial relationship between the resampled systolic and diastolic image matrices. After image registration, the displacement vector of each segment from end-systole to end-diastole was calculated based on the displacement of mass centroids in three dimensions (3D). DIAMOND shows that basal myocardial segments adjacent to the atrioventricular canal undergo the highest mechanical deformation and are the most susceptible to doxorubicin-induced cardiac injury. Overall, DIAMOND provides novel insights into segmental cardiac mechanics in zebrafish embryos beyond traditional ejection fraction (EF) under both physiological and pathological conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []