Biocompatible Temperature Nanosensors Based on Titanium Dioxide

2020 
The measurement of temperature is of fundamental importance in a huge scale of applications, from nanomedicine, where the early detection of tumorous cells is an essential requirement, to microelectronics and microcircuits. Optical sensors with a micro/nano-spatial resolution can be used for temperature determination within a biological frame. Within this context, Raman spectroscopy is particularly interesting: the inelastic scattering of light has the advantage of a contactless measurement and exploits the temperature-dependence of intensities in the spectrum by observing the intensity ratio of anti-Stokes and Stokes signals. Titanium dioxide can be regarded as a potential optical material for temperature detection in biological samples, thanks to its high biocompatibility, already demonstrated in literature, and to its strong Raman scattering signal. The aim of the present work is the realization of biocompatible optical thermometers, with a sub-micrometric spatial resolution, made of titanium dioxide. Raman measurements have been performed on anatase powder using 514.5, 568.2 and 647.1 nm excitation lines of the CW Ar/Kr ion laser. The laser beam was focalized through a microscope on the sample, kept at defined temperature using a temperature controller. The Stokes and anti-Stokes scattered light was analyzed through a triple monochromator and detected by a liquid nitrogen-cooled CCD camera. Raw data were analyzed with Matlab and Raman spectrum parameters—such as area, intensity, frequency position and width of the peak—were calculated using a Lorentz fitting curve. Preliminary results showed that good reliable temperatures can be obtained.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    1
    Citations
    NaN
    KQI
    []