Giant negative thermal expansion covering room temperature in nanocrystalline GaNxMn3

2015 
Nanocrystalline antiperovskite GaNxMn3 powders were prepared by mechanically milling. The micrograin GaNxMn3 exhibits an abrupt volume contraction at the antiferromagnetic (AFM) to paramagnetic (PM) (AFM-PM) transition. The temperature window of volume contraction (ΔT) is broadened to 50 K as the average grain size (⟨D⟩) is reduced to ∼30 nm. The corresponding coefficient of linear thermal expansion (α) reaches ∼ −70 ppm/K, which are comparable to those of giant NTE materials. Further reducing ⟨D⟩ to ∼10 nm, ΔT exceeds 100 K and α remains as large as −30 ppm/K (−21 ppm/K) for x = 1.0 (x = 0.9). Excess atomic displacements together with the reduced structural coherence, revealed by high-energy X-ray pair distribution functions, are suggested to delay the AFM-PM transition. By controlling ⟨D⟩, giant NTE may also be achievable in other materials with large lattice contraction due to electronic or magnetic phase transitions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    29
    Citations
    NaN
    KQI
    []