Down-regulation of the phosphoenolpyruvate carboxykinase gene in human colon tumors and induction by omega-3 fatty acids

2010 
The polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) reduces proliferation of several cell types, including colon tumor cells, and regulates gene expression in a cell- and gene-selective manner. In hepatocytes, the fatty acid synthase (FAS) gene is down-regulated by DHA whereas the carnitine palmitoyltransferase-1 (CPT-1) gene is up-regulated. In adipocytes but not in hepatocytes, the expression of the cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) gene is stimulated by unsaturated FA, including DHA. We monitored the expression of the FAS, CPT-1 and PEPCK-C genes in rat and human colon and in colonic tumors from humans. The ratio of PEPCK-C to FAS transcripts was in favor of PEPCK-C in human and rat colon, whereas the opposite occurred in Caco2 tumoral cells. FAS gene expression declined from proliferative to differentiated Caco2 cells, while in contrast the expression of PEPCK-C and CPT-1 genes increased. DHA strongly induced expression of the PEPCK-C and CPT-1 genes, in correlation with decreased cell growth, while, as expected, it reduced FAS mRNA. We assessed the relative expression of PEPCK-C, CPT-1 and FAS genes in fragments of colonic tumors and adjacent non-tumoral tissue from a series of 10 patients. PEPCK-C and CPT-1 mRNAs are more abundant in non-tumoral tissues than in the tumoral counterpart, whereas the opposite occurred for the FAS gene. Therefore, the PEPCK-C gene can be defined as a new negative marker for colonic tumors and a target for the anti-tumorigenic action of omega-3 PUFAs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    9
    Citations
    NaN
    KQI
    []