Third-order relativistic hydrodynamics: dispersion relations and transport coefficients of a dual plasma

2019 
Hydrodynamics is now understood as an effective field theory that describes the dynamics of the long-wavelength and slow-time fluctuations of an underlying microscopic theory. In this work we extend the relativistic hydrodynamics to third order in the gradient expansion for neutral fluids in a general curved spacetime of $d$ dimensions. We find 59 new transport coefficients, 20 due to third-order scalar corrections and 39 due to tensorial corrections. In the particular case of a conformal fluid, the number of new transport coefficients is reduced to 19, all of them due to third-order tensorial corrections. The dispersion relations of linear fluctuations in the third-order relativistic hydrodynamics is obtained, both in the rest frame of the fluid and in a general moving frame. As an application we obtain the transport coefficients of a relativistic conformal fluid in three-dimensions by using the AdS/CFT correspondence. The gravity dual of the fluctuations in this conformal fluid is described by the gravitational perturbations of four-dimensional anti-de Sitter black branes, which are solutions of the Einstein equations with a negative cosmological constant. To find the hydrodynamic quasinormal modes (QNMs) of the scalar sector we use the SUSY quantum mechanics of the gravitational perturbations of four-dimensional black branes. Such a symmetry allows us to find the hydrodynamic limit of the scalar-sector wave function from the known solution of the vector sector, which is in general easier to be found directly from the (vector) perturbation equations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    124
    References
    1
    Citations
    NaN
    KQI
    []