Monitoring of tumour progression using bioluminescence imaging and computed tomography scanning in a nude mouse orthotopic model of human small cell lung cancer

2012 
Abstract Human small cell lung carcinoma (SCLC) is the most aggressive type of lung cancer but no clinically relevant animal model has been developed to date. Such a model would be valuable to study the molecular aspects of tumour progression and to test the effectiveness of new treatment agents. We generated a reproducible and reliable nude mouse orthotopic model of human SCLC with NCI-H209 tumour cells genetically modified to express firefly luciferase. Cells were analysed for long-term stability of bioluminescence and a clone was passaged twice subcutaneously to enhance tumorigenicity. Cells resuspended in Matrigel and/or EDTA RPMI medium containing a 99m Tc-labelled tin colloid used as tracer were implanted intrabronchially with a catheter inserted into the trachea and positioned in the main bronchus using X-ray-guided imaging. Deposition of cells into the lung was then assessed by scintigraphy. The growth of the primary tumour was sensitively and non-invasively followed by bioluminescence imaging that allowed real-time monitoring of tumour progression in the same animals over a 2–12-week period. Additional 3D bioluminescence imaging and computed tomography scanning were used to document tumour location and measurements that were confirmed by histological analyses. In conclusion, this original nude mouse orthotopic model resembles various stages of human small cell lung cancer, and therefore could be used to evaluate new treatment strategies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    14
    Citations
    NaN
    KQI
    []