Submicron surface roughening of aliphatic polyamide 6,6 fabric through low temperature plasma and its effect on interfacial bonding in rubber composite:

2018 
The present study aims to produce submicron surface roughening of aliphatic polyamide 6,6 (nylon 6,6) fabric using dielectric barrier discharge-based atmospheric low temperature plasma for improving the adhesion bonding with rubber. The plasma treatment was done in the time ranging from 15 s to 300 s. Formation of surface roughness on the fabric due to plasma treatment and the associated chemical changes were studied through high-resolution scanning electron microscope, geometrical surface roughness by Kawabata evaluation system surface tester, contact angle measurements and Fourier transform infrared in Attenuated total reflectance mode. Scanning electron microscope micrographs revealed the presence of submicron roughness on the nylon 6,6 fibre surface with pores of around 100 nm (0.1 µm) for the optimum treatment time of 180 s above which the pore merging effect dominated resulting in the net low surface roughness. Geometrical roughness (SMD) results were also well in agreement with the scanning electro...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []