Generative modeling of histology tissue reduces human annotation effort for segmentation model development.

2021 
Segmentation of histology tissue whole side images is an important step for tissue analysis. Given enough annotated training data modern neural networks are capable accurate reproducible segmentation, however, the annotation of training datasets is time consuming. Techniques such as human in the loop annotation attempt to reduce this annotation burden, but still require a large amount of initial annotation. Semi-supervised learning, a technique which leverages both labeled and unlabeled data to learn features has shown promise for easing the burden of annotation. Towards this goal, we employ a recently published semi-supervised method: datasetGAN for the segmentation of glomeruli from renal biopsy images. We compare the performance of models trained using datasetGAN and traditional annotation and show that datasetGAN significantly reduces the amount of annotation required to develop a highly performing segmentation model. We also explore the usefulness of using datasetGAN for transfer learning and find that this greatly enhances the performance when a limited number of whole slide images are used for training.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    0
    Citations
    NaN
    KQI
    []