Follow Your Star: New Frameworks for Online Stochastic Matching with Known and Unknown Patience.

2021 
We study several generalizations of the Online Bipartite Matching problem. We consider settings with stochastic rewards, patience constraints, and weights (both vertex- and edge-weighted variants). We introduce a stochastic variant of the patience-constrained problem, where the patience is chosen randomly according to some known distribution and is not known until the point at which patience has been exhausted. We also consider stochastic arrival settings (i.e., online vertex arrival is determined by a known random process), which are natural settings that are able to beat the hard worst-case bounds of more pessimistic adversarial arrivals. Our approach to online matching utilizes black-box algorithms for matching on star graphs under various models of patience. In support of this, we design algorithms which solve the star graph problem optimally for patience with a constant hazard rate and yield a 1/2-approximation for any patience distribution. This 1/2-approximation also improves existing guarantees for cascade-click models in the product ranking literature, in which a user must be shown a sequence of items with various click-through-rates and the user's patience could run out at any time. We then build a framework which uses these star graph algorithms as black boxes to solve the online matching problems under different arrival settings. We show improved (or first-known) competitive ratios for these problems. Finally, we present negative results that include formalizing the concept of a stochasticity gap for LP upper bounds on these problems, bounding the worst-case performance of some popular greedy approaches, and showing the impossibility of having an adversarial patience in the product ranking setting.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []