Modeling the impacts of traffic emissions on air toxics concentrations near roadways
2009
Abstract The dispersion formulation incorporated in the U.S. Environmental Protection Agency's AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwind receptors ranging from 10-m to 100-m from the edge of a major highway in Raleigh, North Carolina. The contributions are computed using the following steps: 1) Evaluate dispersion model estimates with 10-min averaged NO data measured at 7 m and 17 m from the edge of the road during a field study conducted in August, 2006; this step determines the uncertainty in model estimates. 2) Use dispersion model estimates and their uncertainties, determined in step 1, to construct pseudo-observations. 3) Fit pseudo-observations to actual observations of VOC concentrations measured during five periods of the field study. This provides estimates of the contributions of traffic emissions to the VOC concentrations at the receptors located from 10 m to 100 m from the road. In addition, it provides estimates of emission factors and background concentrations of the VOCs, which are supported by independent estimates from motor vehicle emissions models and regional air quality measurements. The results presented in the paper demonstrate the suitability of the formulation in AERMOD for estimating concentrations associated with mobile source emissions near roadways. This paper also presents an evaluation of the key emissions and dispersion modeling inputs necessary for conducting assessments of local-scale impacts from traffic emissions.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
14
References
37
Citations
NaN
KQI