ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion.

2013 
Summary The multicomponent type VI secretion system (T6SS) mediates the transport of effector proteins by puncturing target membranes. T6SSs are suggested to form a contractile nanomachine, functioning similar to the cell-puncturing device of tailed bacteriophages. The T6SS members VipA/VipB form tubular complexes and are predicted to function in analogy to viral tail sheath proteins by providing the energy for secretion via contraction. The ATPase ClpV disassembles VipA/VipB tubules in vitro, but the physiological relevance of tubule disintegration remained unclear. Here, we show that VipA/VipB tubules localize near-perpendicular to the inner membrane of Vibrio cholerae cells and exhibit repetitive cycles of elongation, contraction and disassembly. VipA/VipB tubules are decorated by ClpV in vivo and become static in ΔclpV cells, indicating that ClpV is required for tubule removal. VipA/VipB tubules mislocalize in ΔclpV cells and exhibit a reduced frequency of tubule elongation, indicating that ClpV also suppresses the spontaneous formation of contracted, non-productive VipA/VipB tubules. ClpV activity is restricted to the contracted state of VipA/VipB, allowing formation of functional elongated tubules at a T6SS assembly. Targeting of an unrelated ATPase to VipA/VipB is sufficient to replace ClpV function in vivo, suggesting that ClpV activity is autonomously regulated by VipA/VipB conformation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    105
    Citations
    NaN
    KQI
    []