In Silico Discovery and Validation of Amide Based Small Molecule Targeting the Enzymatic Site of Shiga Toxin

2016 
Shiga toxin (Stx), a category B biothreat agent, is a ribosome inactivating protein and toxic to human and animals. Here, we designed and synthesized small molecules that block the active site of the Stx A subunit. On the basis of binding energy, 20 molecules were selected for synthesis and evaluation. These molecules were primarily screened using fluorescence-based thermal shift assay and in vitro in Vero cells. Among 32 molecules (including 12 reported), six molecules offered protection with IC50 of 2.60–23.90 μM. 4-Nitro-N-[2-(2-phenylsulfanylethylamino)ethyl]benzamide hydrochloride is the most potent inhibitor with IC50 at 7.96 μM and selectivity index of 22.23 and is better than any known small molecule inhibitor of Stx. Preincubation with Stx offered full protection against Shiga toxin in mice. Surface plasmon resonance assay further confirmed that these molecules bind specifically to Stx A subunit. Further optimization is continued to identify a potential candidate which will be in vivo effective.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    9
    Citations
    NaN
    KQI
    []